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Creating an artificial cell, we strive to characterize and under-
stand it as deeply as possible. Utilizing optical tweezers integrat-
ed with fluorescence spectroscopy and microfluidic techniques, 
I aim to build a system for in vivo manipulation of DNA. It will 
allow for a quantitative description of protein-DNA interaction 
inside the artificial cell during such fundamental processes of 
molecular biology as replication and transcription.
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Water-in-oil emulsion droplets are pushed 
through the lipid monolayer formed on the in-
terface of lipid-in-oil and aqueous solutions to 
produce liposomes.

Inverse emulsion

An improved version of the inverse emulsion.
Here, the water-in-oil droplets are produced 
with a capillary. The encapsulation e�ciency 
and size monodispersity are higher.

cDICE

A microfluidics-based approach, where the 
double emulsion droplets of equally small size 
are flow focused. The dewetting process 
leads to the separation of the oil droplet from 
the liposome.

OLA

Immobilization

If the liposomes are freely floating in the solution during the experi-
ment, they will get trapped. This would obstruct successful bead ma-
nipulation. Possible solutions to this problem are:

Trapping Deformation

Biotin
Streptavidin Traps etched 

in PDMS

Flow

Hyperosmotic stress

T7 DNA Polymerase switching between 
Exonucleolysis and Replication in force meaurements

Protein dynamics on a densly covered DNA 
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Studying DNA anaphase ultra-fine bridges 
by three-color imaging of associated protein factors

DNA bridging by XRCC4 and XLF investigated 
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The inverse emulsion has a high yield and was al-
ready used for beads encapsulation (bottom 
figure). Nevertheless, cDICE is the most prospec-
tive candidate for GUV production due to its fast 
automated  liposome production rates, high en-
capsulation e�ciency and a lower degree of shear 
stress exerted on the inner solution. The latter is 
particularly important to prevent DNA damage.


